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The concept of hole migration in metals as the mechanism of self-diffusion and of diffusion of sub- 
stitution-solute atoms has arisen from the apparent failure of other reasonable mechanisms, such as 
direct interchange, to give heats of activation comparable to those observed. In  the present paper it 
is pointed out that  diffusion by direct interchange is only a special case of diffusion by the synchron- 
ized cychc motion of a number of atoms, herein called ring diffusion. General arguments are pre- 
sented demonstrating that a 4-ring has a lower potential-energy barrier for cyclic motion than has 
a 2-ring, which corresponds to direct interchange. These general arguments are supported by 
detailed calculations for the particular case of self-diffusion in copper. I t  is concluded that  such 
ring diffusion is not excluded by energy considerations. 

1. Introduction and results 

I n  their  s tudy of the self-diffusion of copper, H,mt ing ton  
& Seitz (1942) found tha t  in tha t  metal  an interchange 
of two neighboring atoms would require much more 
work than  is represented by the observed heat  of 
activation. They further  found that  this  observed heat  
of act ivat ion is consistent with the concept tha t  self- 
diffusion occurs by  the mechanism of hole migration. 
Tha t  such migrat ion does in fact occur in some appears 
(Smigelskas & Kirkendall ,  1947) to be required by the 
Kirkendal l  experiment  (1~. Mehl, private communica- 
tion). In  the absence of any  other mechanism of dif- 
fusion consistent with the observed heats of act ivat ion 
we would, therefore, be forced to accept hole migrat ion 
as the pr imary  mechanism responsible for serf-diffusion 
in all metals  as well as the diffusion of subst i tut ional  
solute atoms. The purpose of this paper is to examine 
another possible mechanism. 

Previous discussions of the mechanism of the dif- 
fusion of lattice atoms, as dist inct  from interst i t ial  
atoms, have started from the assumption tha t  such 
diffusion must  occur either by  direct interchange of two 
neighboring atoms or by  hole migration. While recogni- 
t ion has been indicated of the fact tha t  disturbances 
involving the displacement or rotation of larger groups 
of atoms would also lead to diffusion (Le Claire, 1949, 
pp. 340-1), i t  has been implici t ly  assumed tha t  the 
larger the group which part icipates in the e lementary  
diffusion process the larger must  be the work required 
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to carry it  over the free-energy barrier. The essential 
fallaciousness of this viewpoint is apparent  once we 
recognize the smallness of the work per a tom required 
to distort homogeneously a lattice to an  unstable  
configuration midway between two stable configura- 
tions. Thus the author has shown (Zener, 1948, p. 36) 
tha t  a work equivalent  to only about  1600 cal./mole 
is required to strain homogeneously a copper latt ice 
from one stable face-centered cubic (f.c.c.) configura- 
tion through an unstable body-centered cubic (b.c.c.) 
configuration on its way to a second f.c.c, configuration. 
This 1600 cal./mole is to be compared with the observed 
60,000cal./mole for the heat  of act ivat ion for self- 
diffusion in copper. I t  is thereby apparent  tha t  the 
most appropriate region for an elementary diffusion 
act will be the most appropriate because of the smallness 
of its interaction with the surrounding lattice during the 
e lementary diffusion act rather  than  because of the 
smallness of its size per se. 

The interchange process discussed by  Hunt ing ton  & 
Seitz is represented in Fig. 1 as the rotation of a two- 
atom ring, hereafter abbreviated as a 2-ring. During 
this rotation the distance between the two-ring atoms, 
as well as the positions of the atoms in the surrounding 
lattice, must  be regarded as adjust ing themselves so 
as to minimize the work necessary to rotate the ring 
to its position of m a x i m u m  free energy at  the angle of 
½1r. A possible 3-ring and 4-ring for f.c.c, lattices are 
i l lustrated in Figs. 2 and 3. These rings have been drawn 
so tha t  each ring atom jumps  into a nearest-neighbor 
position. I t  is ant icipated tha t  this  nearest-neighbor 
requirement  will be satisfied by  tha t  ring having the  
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lowest free energy of activation. A 3-ring cannot be 
drawn in a b.c.c, lattice satisfying this nearest-neighbor 
requirement. A possible 4-ring is illustrated in Fig. 4. 

A computation of the free energy of activation for 
a ring diffusion can only be made upon the basis of some 
assumption regarding the interatomic forces. We start  
our analysis with the assumptions adopted by Hunting- 
ton & Seitz. The measured 'heat  of activation'  is to be 
identified as the potential-energy barrier which a ring 
would have to overcome during an elementary diffusion 
act if the lattice were devoid of all thermal motion. 
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& Seitz (1942) 

Fig. 1. 2-ring diffusion in f.c.c, lattice. 
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from other neighboring ions. The interaction U is 
written explicitly as 

U(ri;) = A  exp [-a(rij-ro)/a], (3) 

where r 0 is the distance between nearest neighbors in 
the equilibrium configuration of the lattice, and a is 
the lattice constant. The two constants A and a are 
adjusted so as to give the observed shear elastic con- 
stants. The third term, Cv, takes care of all other types 
of energy, and is assumed to be a function only of the 
volume of the lattice, and thereby to remain unaltered 
both during the elementary diffusion act and during 
the homogeneous shear strains considered in com- 
puting the two constants A and a. 

,," " I /  

Fig. 3. 4-ring diffusion in f.c.c, lattice. 
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Fig. 2. 3-ring diffusion in f.c.c, lattice. ¢ 

Under such conditions the energy of the lattice is 
represented as the sum of three terms: 

E--- ¢c-F Cex.+ Cv. (1) 

The first term represents the coulomb interaction of 
the positive ions on the assumption that  the conduction 
electrons are uniformly distributed, and remain uni- 
formly distributed irrespective of the movements of the 
positive ions during an elementary diffusion act. The 
second term represents the repulsive exchange inter- 
action between the positive ions. I t  may be written as 

Cex.=½ZijU(ri~), (2) 

where U(rij ) is the exchange interaction between two 
ions a distance ri~ apart. The implicit assumption is 
thus made that  the exchange interaction between two 
ions is independent of the distances of these two ions 

Fig. 4. 4-ring diffusion in b.c.c, lattice. 

Again following Huntington & Seitz, we shall analyze 
separately the contributions of the coulomb and 
exchange interactions to the heat of activation for 
diffusion. In  their original paper these authors esti- 
mated the contribution of the coulomb interaction, 
He, to be 250,000 cal./mole. This original estimate 
has later (Huntingon & Seitz, 1949) been reduced to 
150,000 cal./mole when the surrounding lattice is con- 
sidered as rigid, or to 110,000 cal./mole when the sur- 
rounding lattice is relaxed. In §2 we find tha t  the 
coulomb interaction is an order of magnitude smaller 
for a 4-ring diffusion than for a direct interchange, 
being only 24,000 cal./mole as calculated before letting 
the surrounding lattice relax, 8000cal./mole after 
relaxation of the first ten nearest neighbors. The coulomb 
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interaction thus presents at  most a relatively minor 
obstacle to 4-ring diffusion. 

The exchange interaction is analyzed in § 3. Here the 
4-ring diffusion does not show such a marked advantage 
over the 2-ring diffusion. Thus while Huntington & 
Seitz found the contribution He= of the exchange 
interaction to be 140,000cal./mole in their original 
paper, and 125,000 in their refined computations, we 
find Hex" is 91,000 cal./mole for a 4-ring diffusion. No 
way is found of lowering this computed value of Hex" 
and still keeping within the general framework of our 
original assumptions regarding the nature of the 
exchange interact ion between the ions. Our original 
assumption of the independence of the exchange 
interaction of two pairs of ions upon the presence of 
neighboring ions is in apparent contradiction to the 
findings of crystal chemistry in regard to the decrease 
in the effective size of ions as their co-ordination num- 
ber decreases. I t  is found tha t  a decrease in effective 
size of the ring atoms by 3.5 % at the saddle configura- 
tion, where the number of nearest neighbors is four as 
compared with twelve for the equilibrium configuration, 
is sufficient to reduce thd computed value of Hex" to 
the empirically determined value of 60,000 cal./mole. 
Finally, in § 4 we present evidence that  the coulomb 
energy term, ¢c, is much smaller than would be obtained 
on the assumption that  the conduction electrons remain 
essentially undisturbed when the lattice is subject to 
a distortion involving no change in volume. We, 
therefore, feel justified in neglecting even the small 
contribution H c which q~c makes to the heat of activa- 
tion based upon the above assumption. 

The above results lead us to the conclusion that  a 
4-ring elementary diffusion act is energetically con- 
sistent with the observed heat of activation, and hence 
energy considerations do not force us to regard diffusion 
as arising from the migration of holes. 

2.  C o u l o m b  i n t e r a c t i o n  

Since the computation of the contribution of the 
coulomb interaction to the free energy of activation is 
quite tedious for any particular ring, it is desirable to 
have some easily applicable method of selecting those 
rings for which this contribution is a m i n i m u m ,  and of 
seeing why the contribution is larger for a 2-ring than 
for some higher-order rings. Towards this end we envi- 
sage a potential energy V,,(s) associated with the rigid 
rotation of an n-ring, the surrounding lattice being 
regarded as held fixed. The argument s is the displace- 
ment  of a ring atom from its original equilibrium posi- 
tion. The essential features of V,,(s) are represented in 
Fig. 5. For an n-ring the equilibrium position s = sn will 
be identicalwith the equilibrium position x -  0. We shall 
a t tempt  to gain some information about the relative 
magnitude of the potential energy barrier A Vn for 
various order rings from the behavior of Vn(s) at small 
values of its argument. 

For very small values of s, V,, may be written as 

V~(s)=½nCs~+ Z r-~{Pi.Pj-3(r /~.P/)(r i j .P~)},  (4) 
pairs ii 

where C in the first term is the force constant which 
binds each atom to its equilibrium position, all other 
atoms being held fixed, and where the second term is 
the dipole-dipole interaction. In this second term, P is 
the magnitude of each dipole, namely es, while Pi is 
the unit vector pointing in the direction of the associated 
dipole. The quantities ri~ and ri~. have analogous in- 
terpretations. Upon expressing the curvature of Vn at 
its minimum in the form 

V:(O)=a~,C-bne~/r a, (5) 

where r 0 is the closest distance of approach between 
the atoms in the lattice, we construct Table 1 for 

0 $1 Sz 

S ) 

Fig. 5. Potential-energy function of ring. 

2-, 3-, 4- and 6-rings in a f.c.c, lattice. In evaluating 
the third row we have taken 

C=(4Tr/3) e2/A, (6) 

where A is the atomic volume. This expression for C 
may be obtained directly from the definition 

c=e(a21~x~) ¢, 
where the differentiation is to be taken at a lattice 
position, and ¢ is the electrostatic potential exclusive 
of the contribution due to the ion occupying this lattice 
position. The cubic symmetry of the crystal allows us 
to replace the operator (a~/~x 2) by ½V% We now obtain 
equation (6) by utilizing Poisson's equation to replace 
V~¢ by -47rp, where p is the uniform charge density 
arising from the conduction electrons. From Table 1 
we see that  V~(0) is practically constant as we pass from 
a 2- to a 6-ring. The linear increase in a n with n is 
essentially compensated by the rapid rise in the dipole- 
dipole interaction as shown by the coefficient b,. 

Table 1. Curvature of ring potential at minimum 
Order of ring 2 3 4 6 
a n 2 3 4 6 
b n 2 7"5 13"7 25"9 
V~,(0) (in units of e2/a 8) 27.9 29.0 28.4 27-5 

The above simplified treatment  of the interaction of 
the ring atoms as dipole-dipole interactions is sufficient 
to dispel our almost intuitive feeling that  the larger 
the ring the larger the potential energy barrier A Vn. 
Higher approximations to the dipole-dipole interaction 
indicate that  A V2 is larger than the potential energy 
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barrier for the rings of the next few higher orders. Thus 
when we retain the next terms in the dipole-dipole 
interaction, we find that  for V9 these form an oscillating 
series, while for V4 and Ve all terms have the same sign 
as the first. We thus anticipate the relative shapes of 
the potentials for the 2- and 4-rings to be in the same 
order as sketched in Fig. 5. The following quantitative 
analysis will be confined to a comparison of the 2-ring 
with the 4-ring, since consideration of the exchange 
interactions introduced in the next section indicates 
that  the 4-ring is to be preferred over the other higher- 
order rings. 

Fig.  6. Saddle  p a r a m e t e r  of ring. 

While symmetry conditions give us lines along which 
the ring atoms must lie in the saddle configuration, they 
do not give their precise positions along this line. We 
therefore introduce the saddle configuration parameter 
x defined in Fig. 6. The height of the potential-energy 
barrier will then be calculated as a function of x. The 
appropriate value of x is that  which minimizes this 
barrier. This calculation will proceed in two steps. In 
the first we calculate the work nA¢ required to transfer 
an ion from its equilibrium position to a position corre- 
sponding to a given x a long way from its original equi- 
librium position. We shall call nA¢ the energy of 
separation. In the second step we calculate the work 
which we gain back by bringing the n vacant lattice 
sites and the n displaced ions into a saddle configura- 
tion. We shall call the change in energy of the lattice 
associated with this second step the interaction energy. 
In calculating the energy of separation we have found 
it most convenient to use the Ewald method. The 
application of this method to our particular problem is 
discussed in the Appendix. The interaction energy is 
given by elementary coulomb interactions. The results 
of the computations are given in Figs. 7 and 8. 

I t  is seen that  the potential-energy barrier for the 
4-ring in an unrelaxed lattice is one-fifth that  for a 
2-ring; in the case of copper it is 24,000 as compared 
to 115,000 cal./mole. 

The calculated potential-energy barrier will, of 
course, be still further lowered when we allow the sur- 
rounding lattice atoms to relax. A relaxation of the 
first ten nearest neighbors lowers the potential energy 
barrier to O.08ee/a, or to 8000cal./mole for copper, 

nearly one order of magnitude lower than the observed 
heat of activation for this metal. 

8 " 0 1  I' I ' I ' I " 
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Fig.  7. Coulomb in te rac t ion  in a 2-ring in f.c.c, lat t ice.  
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Fig. 8. Coulomb in te rac t ion  in a 4-ring in f.c.c, lat t ice.  

3. E x c h a n g e  i n t e r a c t i o n  

In this section we shall neglect the coulomb interaction 
between the positive ions, and shall study the con- 
tribution of the exchange interaction, acting alone, upon 
the potential-energy barrier for an elementary diffusion 
act. The lattice will have, in addition to the exchange 
energy, the term Cv in equation (1) which is a function 
of the volume only, and which remains unaltered during 
an elementary diffusion act. 

The characteristic feature of the exchange forces is 
their extreme shortness of range as compared with that 
of the coulomb forces. Thus, when an atom is in the 
equilibrium configuration of a f.c.c, lattice, its exchange 
interaction with its next nearest neighbors is only about 
one-quarter of 1% of its exchange interaction with its 
nearest neighbors. We should, therefore, be able to 
judge the relative values of the potential-energy barriers 
for diffusion by 2-, 3- and 4-rings by a mere inspection 
of their respective saddle configurations. Since detailed 
calculations, to be given later, are required to deter- 
mine the precise form of the saddle configuration, we 
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shall at present consider those configurations obtained 
by merely rotating the rings without allowing for any 
relaxation either within the ring or in the surrounding 
lattice. Such saddle configurations are presented in 
Figs. 9 and 10 for a 2-ring and for a 4-ring, respectively. 
In  the 2-ring each ring atom is at  a distance of 0.5a, or 
0.71r 0, from four lattice atoms, where r 0 is the distance 
between nearest neighbors in the equilibrium structure. 
Thus, in our present simplified picture the saddle con- 
figuration for a 2-ring is obtained by compressing eight 
links by 29 %. On the other hand, each atom of the 
4-ring is at  a distance of 0.74r 0 from two lattice atoms, 

A 

I 

S /~"  . . . . . .  

! 

s ~ 

/ s  ~ QF 

Fig. 9. Ring-latt ice bonds for ~ddle confi~rat ion 
of a 2-ring in fic.c, lattice. 

o / T  

1 

Fig. 10. Ring-lattice bonds for saddle configuration 
of a 4-ring in f.c.c, lattice. 

and a distance of 0.95r o from two others. The saddle 
configuration of the 4-ring is thus attained by com- 
pressing eight l~nks 26 %, and eight further links 5 %. 
If  the energy of compression of the links is computed 
according to any reasonable model, we find the 4-ring 
requires less energy to attain its saddle configuration 
than does the 2-ring. Thus, if we regard the energy of 
compression as proportional to the square of the com- 
pression, the potential-energy barrier for the 4-ring will 
be only 83 % of tha t  of the 2-ring. We can carry these 
qualitative considerations one stage further and show 
that  ff we now allow the surrounding lattice atoms to 
relax, such relaxation will reduce the potential-energy 
barrier by  a relatively greater amount in the case of 
the 4-ring than in the case of the 2-ring. Thus, in the 
case of the 2-ring the relaxing lattice atoms are nearest 

neighbors of one another, and hence their relaxations 
mutually impede each other. On the other hand, the 
relaxing lattice atoms in the case of the 4-ring are not 
nearest neighbors of one another, and hence do not 
impede each other's relaxations. 

We now turn to a quantitative calculation of the 
potential-energy barrier. Qualitative arguments along 
the line of the preceding paragraph indicate tha t  the 
4-ring has the lowest potential-energy barrier of all 
possible rings, and hence our quantitative discussion 
will be confined to a 4-ring, and to its comparison with 
a 2-ring. The author is aware that  such qualitative 
arguments may be misleading, and that  another type 
of ring could possibly have a lower potential-energy 
barrier. 

I I i i 

8 0 -  
2-ring / @ring 

~" 60 Total energ~ 
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0 0 ~ ~ f r i n g l /  I 
0.05 0.10 0-15 0.20 0-25 

x co-0rdinate of ring 

~'ig. 11. Exchange interaction of a 2-ring and 
4-ring in Le.c. lattice, 

In  making a quantitative comparison of the 2-ring 
and 4-ring we shall take essentially the same exchange 
interaction as was used by Huntington & Seitz (1942), 
namely, that  given by equation (3) with a equal to 13.5. 
(Huntington & Seitz took ~ as 12.5.) We allow the ring 
to relax by contracting, at the same time allowing the 
lattice to relax by the movement of those lattice atoms 
adjacent to the ring atoms. The potential-energy 
barrier was calculated for each ring as a function of the 
saddle parameter x defined in Fig. 6. The results are 
presented in Fig. 11. Here the potential-energy barrier 
has been separated into two terms: 

v(x) = VR (x) + VL (~). 
The first term, the serf-energy of the ring, is the change 
in the bonds linking the ring atoms with one another. 
The second term is the change in the energy of all other 
links, and has been called the ring-lattice interaction 
energy. We note that  ff we compare the 2-ring and the 
4-ring at the same value of the parameter x, the ring- 
lattice interaction energy for the 4-ring is essentially 
twice that  for the 2-ring. The advantage of the 4-ring 
over that  of the 2-ring lies in the circumstance that  in 
the 4-ring the x parameter may assume a much larger 
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value before the self-energy of the ring begins to rise 
appreciably. Thus, before any contraction of the ring 
the x parameter of the 2-ring is 0, while tha t  of the 
4-ring is 0.145. We observe that  at the optimum value 
of the ring relaxations the potential-energy barrier for 
the 4-ring is 75 % tha t  of the 2-ring. 

Having established the superiority of the 4-ring, we 
next perform a more precise calculation for the 4-ring 
in order to see if our present model of diffusion is capable 
of yielding a potential-energy barrier for copper as low 
as the observed heat of activation of 60,000 cal./mole. 
Towards this end two modifications are made in the 
above-mentioned calculations. First, the constants A 
and a are so chosen as to reproduce the observed shear 
elastic constants. Secondly, relaxation in the lattice is 
allowed of next and of next next nearest neighbors to 
the ring atoms. 

The exponent a is completely determined by the 
anisotropy ratio 

~=c~J½(on-C.). 
An explicit relation between ~ and a is obtained by 
utilizing the following relations given by Fuchs (1936): 

C~ = ½N{r ~ U" + 3r U'}r=r0, (7) 

C l l - -  G12 = ½~l~{r2V" .-[- 7rU'}r=ro. (8) 

Here N is the number of atoms per unit volume. We find 

a = 2i(79/-  6)/(9/-2) .  (9) 

Upon substituting into this equation the value of 3.2 
for the anisotropy ratio of copper, we obtain for a the 
value of 19. We may now solve equation (7) for A, 
obtaining A = 4C44/Na(a-  2½.3). (10) 

Upon substituting into this equation the constants 
appropriate to copper we obtain 

A = 1800 cal./mole. 

The procedure adopted for the calculation of the 
potential-energy barrier was as follows. We tentatively 
took the saddle parameter x to be the optimum value 
given in the preliminary calculations reproduced in 
Fig. 11. This value was 0.17. Each of the eight lattice 
atoms which are close to the ring atoms may then be 
regarded as being subjected to a perturbation energy 
Vp defined by V p= U(r ' ) -2U(r" ) ,  (11) 

where r'  and r" are defined by Fig. 12, and hence to an 
externally applied vertical force f equal to 

f (h )= - ~ V p / a h ,  (12) 

where h is its vertical displacement. In order to cal- 
culate the equilibrium value of h, we must first find the 
effective force constant Ceff., which relates h to the 
applied force. Denoting by C the force constant which 
binds an atom to its equilibrium position under con- 
ditions where all neighboring atoms are held fixed, we 

find Ceff" = 0"76C. (13) 

Those atoms which suffer the largest displacements 

are shown in Fig. 12. The relative displacements are 
given by 

h" = 1 , h' = ~h, 0"35 h. 

The force constant C is obtained from the general 
equation for a cubic lattice 

C = in  V ~ U, 

where n is the number of nearest neighbors. For a bond 
energy U of the type given by equation (3) we obtain 

C = 4_Ao:(a - 2~. 2)/a 2, 

or, upon using the constant appropriate for copper, 

Ca 9 = 2,250,000 cal./mole. 

With this value of C substituted into (13), we now obtain 
h by the numerical solution of 

f (h)=Cemh.  (14) 

This solution gives h as 0.08a. The potential-energy 
barrier calculated in this manner was found to be 
101,000 cal./mole. 

Attempts to lower this potential-energy barrier by 
further relaxations resulted in only a slight decrease. 
Allowing the eight a-type atoms to relax horizontally 
lowered the energy 6000cal./mole. Further miscel- 
laneous relaxations accounted for a lowering of 4000 
cal./mole. The originally estimated value of 0.17 for 
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Fig. 12. Relaxation in copper lattice surrounding a 4-ring. 

the x parameter was found to be correct, since the ring 
atoms were found to be under no net force. On the 
model herein adopted it thus appears that  the potential- 
energy barrier for diffusion is about 91,000 cal./mole, 
50 % higher than the observed value. 

An a t tempt  was made to lower the calculated poten- 
tial-energy barrier by allowing the ring to rotate as 
a ring dislocation rather than for all four atoms to rotate 
in synchronism, as was implicitly assumed above. I t  
was found that  if one atom was placed at a saddle point, 
the potential energy was a minimum when all other 
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ring atoms were also at saddle points. Rotation does 
not, therefore, occur as a ring dislocation. 

Any further at tempts at  lowering the calculated 
potential-energy barrier must, therefore, consist in a 
relaxation in the assumptions made regarding the 
atomic interactions. The first a t tempt  in this direction 
lay in testing the possibility that  the coefficient a 
decreases with decreasing interatomic distance. Such 
a variation of a would lead to a bulk modulus which 
increases with pressure less rapidly than if cc were to 
remain constant. Upon adopting Bridgman's notation 
for compressibility data, 

- ( V - Vo)/Vo = aP - bP 9", (15) 
we obtain 

P= -{(V- Vo)/(aVo)}.{l-(b[a ~) (V- Vo)]Vo}. 
Upon expressing P in terms of 3r, the change in the 
distance between nearest neighbors, we find 

_ 3  ((3r/ro) + (1 -- 3b/a ~) ($r/ro)~). P =  

We now utilize equations (1)-(3) to obtain a second 
power series of P in M/r o. In  so doing we neglect the 
second derivative of ¢c and of ¢~ with respect to r in 
comparison with the second derivative of Cex.. Com- 
parison of coefficients in these two power series for 
P leads to 

(1-3ba-~)=(½t3s+2,S+3)(/(,8+2), (16) 

where /? = 2-t a. 

From Table 2 we see tha t  the assumption of a constant 
a is in complete agreement with the compressibility 
data and hence one would not be justified in letting 
decrease with decreasing distance of separation. This 
conclusion of constancy of a had previously been 
reached by Huntington & Seitz (1949). 

Table 2. Compressibility data 

Source b/a ~ 
E q u a t i o n  (16) 7-8 
Bridgmma 6.53 (Lazarus,  1949) 
Lazarus  8.09 (Lazarus,  1949) 

We shall make one further a t tempt  at  relaxing our 
assumptions regarding atomic interactions. Whereas 
in the equilibrium configuration each lattice atom has 
12 nearest neighbors, in the saddle configuration each 
ring atom has only two nearest neighbors, two neighbors 
at  a somewhat further distance, two atoms at  a still 
further distance, etc. The distances of the first few 
neighbors are given in Table 3. 

Table 3. Neighbors at saddle configuration 

N u m b e r  2 2 2 2 
Dis tance  (in uni ts  of  r0) 0.89 0.935 0.965 1.01 

In  his s tudy of the radii of metallic atoms Pauling 
(1947) starts from the assumption tha t  metallic binding 
is due to valence bonds. According to this viewpoint, 

the smaller the co-ordination number, i.e. the number of 
nearest neighbors, the larger will be the number of 
valence electrons which contribute to the binding with 
a given nearest neighbor, and hence the tighter will be 
the binding between each pair of adjacent atoms. 
Pauling argues tha t  the tighter binding associated with 
a smaller co-ordination number will be reflected in a 
smaller atomic radius, and conversely that  the observed 
decrease in interatomic distance with decreasing co- 
ordination number is due solely to a tighter binding. 
His empirical formula for the radius R~ associated with 
a co-ordination number z is 

R12- R~ = 0.300A log10 (12/z). (17) 

The contraction, as given by this equation, of the radii 
of copper atoms having a co-ordination number less 
than 12 is given in Table 4. A change in the radii of the 
ring atoms may be formally incorporated into our theory 
through a corresponding change of the parameter r 0 
appearing in the exchange interaction of equation (3). 

Table 4. Influence of co-ordination number upon radii 
of copper atoms (according to equation (17)) 

Co-ordination no. 12 8 6 4 2 
(R12--Rz)/R12 0 0"04 0"07 0-11 0-18 

--~" 90,000 

c 
70,000 

60,000 

o ~ 50,0o0 

40,000 I I I I ! 
0 1 2 3 4 5 6 
Contraction in radius of ring atoms (%) 

Fig. 13. Effect  of  con t rac t ion  of  r ing a toms  upon  
poten t ia l -energy  barr ier  of  a 4-ring in copper.  

Thus if we assume a 6 % decrease in the radii of the 
ring atoms at their saddle configuration, the parameter 
r 0 in equation (3) must be decreased 3 % for the inter- 
action energy between ring atoms. The effect of such 
a decrease upon the calculated potential-energy barrier 
is shown in Fig. 13. Comparison of Tables 3 and 4 with 
Fig. 13 shows tha t  an uncritical acceptance of Pauling's 
viewpoint would lead to a potential-energy barrier 
much less than the observed 60,000 cal./mole. Thus, if 
we were to take 6 as a conservative estimate of the co- 
ordination number of a ring atom at the saddle con- 
figuration, the potential-energy barrier would be less 
than 45,000 cal./mole. 

The success of equation (17) in reproducing the ob- 
served change in atomic radii with co-ordination number 
does not necessarily imply a related change in atomic 
interactions. As has already been discussed by Zachari- 
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asen (1931 ), the distance between nearest neighbors will 
be different in structures having different co-ordination 
numbers merely because of energy requirements. We 
are, therefore, led to investigate that  relation between 
closest distance of approach and co-ordination number 
which is demanded by energy requirements. In con- 
formity with our original assumptions we write as 
follows the energy of an undeformed lattice of N atoms 
having a co-ordination number of z: 

E = ½NzBe-~ 'r + ¢(v). (18) 

The equilibrium distance between nearest neighbors 
will be that  value of r, rz, which minimizes E. This 
equilibrium distance is obtained by equating dE~dr to 
zero. If  we are to compare the equilibrium distances 
associated with different values of z, some assumption 
must be made regarding ¢'(v). In recognition of the 
fact that  the exchange energy varies with r much more 
rapidly than do the other energy terms, we shall take 
¢'(v) as being identical in the two structures. We 
thereby obtain for the equilibrium values rz and r~: 

rz-r'~= {rz/(r~,- 2)} h~ (z/~'). (19) 

Upon using the values of R12 and T appropriate to 
copper, we obtain for the radius R~: 

R12- R~ = 0.25A logl0(12/z ). (20) 

When we now compare this equation with Pauling's 
empirical equation (17), we see that  our general assump- 
tions (1)-(3) lead us to the conclusion that  the maj or part  
of the observed contraction of the radii of metallic 
atoms with decreasing co-ordination number arises 
because of energy requirements and is, therefore, not 
associated with a change in the interatomic forces, as 
has been assumed by Pauling. 

The above considerations prevent us from adjusting 
the parameter r 0 in the exchange energy (3) in accord- 
ance with Pauling's formula (17). They detract in no 
way, however, from Pauling's general thesis that  the 
exchange interaction between two metallic atoms will 
be more attractive, or less repulsive, the smaller the 
co-ordination number of each atom. Such a thesis may 
also be arrived at from considerations based upon the 
Thomas-Fermi model of an atom. When, in this model, 
an atom has only two nearest neighbors, the exchange 
repulsive interaction between each pair of atoms will 
be reduced by an angular redistribution of charge. An 
angular redistribution of charge would not take place 
if the co-ordination number were high. As yet, however, 
the theory of interatomic forces has not advanced to 
a stage where we may quantitatively evaluate the 
effect of a change of co-ordination number. We must 
at present, therefore, be content with the knowledge 
that  theoretical considerations show that  a decrease in 
co-ordination number will lead to a decrease in the 
parameter r 0 in the exchange energy (3), and that  a 
decrease in r 0 of 3-5 % for ring-ring interaction, of 

1.75 % for ring-lattice interaction, is sufficient to 
reduce the computed value of the potential energy 
barrier for diffusion to the observed value. 

o 

In  §2 we found that  coulomb interactions, in the 
absence of all exchange interactions, would give rise 
to a potential-energy barrier for 4-ring diffusion at least 
one order of magnitude smaller than the observed heat 
of activation. From this result we cannot deduce, 
a priori, that  when exchange interaction is present the 
contribution of the coulomb interaction will still be 
negligible. Such would not be the case if the saddle 
configuration corresponding to the coulomb forces 
acting alone were considerably different from the saddle 
configuration corresponding to the exchange forces 
acting alone. The two saddle configurations are, how- 
ever, very similar. Thus in the two extreme cases 
where the coulomb forces act alone and where the 
exchange forces act alone, the x parameter of the saddle 
configuration is 0-19a and 0.18a, respectively, while the 
vertical displacement of the a-type atoms (see Fig. 12) 
are 0.04a and 0.07a, respectively. We anticipate, 
therefore, that  in the actual copper lattice the coulomb 
forces will make at  most a very small contribution to 
the potential-energy barrier. 

An a t tempt  to make a consistent calculation in 
which both types of forces are taken into account has 
led to the conclusion that  when a copper lattice is dis- 
torted the copper ions do not move through an un- 
distorted essentially uniform distribution of conduction 
electrons, but rather tha t  the distribution of the con- 
duction electrons becomes distorted so as to shield the 
positive ions from the major part  of their coulombic 
interaction. In the absence of such shielding equations 
(7) and (8) for the exchange parameter c¢ must be 
modified. The left members of these equations must then 
represent only that  contribution to the elastic coeffi- 
cients arising from the exchange interaction, i.e. they 
must equal the actual elastic coefficients minus the 
coulombic contributions. Upon using the coulombic 
contributions calculated by Fuchs (1936), one obtains 
for a the value 25 in place of our original value 19. Two 
independent considerations lead us to the belief that  
the original value is the better of the two. First, we 
anticipate that  the exchange interaction will vary with 
interatomic distance approximately as the product of 
the charge densities of the two atoms at their midpoint. 
Upon using the charge densities (Hartree & Hartree, 
1936) computed by the Hartree-Fock equations, we 
find tha t  this product is e x p ( - 2 O r / a ) ,  in agreement 
with our original value for a of 19. Secondly, we have 
found in § 3 our original value of a to be in complete 
agreement with the empirical data on the pressure 
variation of compressibility. We must therefore con- 
clude that,  at  least in the case of copper, during a lattice 
distortion the conduction electrons must suffer such 
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a redistribution as to shield the positive ions from the 
major part of their coulombic interaction. 

APPENDIX 

In the calculations referred to in § 2 the author has made 
extensive use of the Ewald method of evaluating the 
potential within a crystal lattice (Ewald, 1916 a, b, 
1921 a, b). In our present case ofa f.c.c, lattice where the 
positive ions have all the same charge, and the negative 
charge is uniformly distributed, the Ewald formula may 
be expressed in a particularly simple manner. The 
potential at an arbitrary point with the position vector 
r is given by 

V(r)= -(eqflrA)+(eTrq-t)Sl+(eqflrA)S'~. (1) 

The quantity q is a parameter with dimensions of 
(length) ~' which may be given any arbitrary positive 
value. For small values the first sum S 1 is rapidly con- 
vergent, the second sum S~. is slowly convergent. For 
large values of q, S 1 converges slowly, S~ converges 
rapidly. In actual computations q is assigned such 
a value as to miaimize the labor in evaluating these 
two sums. For reasons explained below, q has been 
given the value q = 7rA~ (2) 

in the present calculations. With this value it has rarely 
been necessary to retain more than the first two terms 
in S 1 and S~ in order to obtain V to an accuracy of one 
par~ in 10,000. The quantity A is the atomic volume. 
The first sum is given by 

- - - r _ r ~  I , (3) 

where the sum is over all lattice positions r~, and where 

£ F(x) = 2~r-t e -~  &. (4) 

The quantity 1 - F ( x )  is simply the error function, 
tables of which may be found in many places. A table 
in which x varies in steps of 0.001 over the range of 
interest in our present work has been given by Burgess 
(1897-8). The second sum is given by 

S i = ] ~ ' e x p [ 2 , i k . r ] e x p [ - q l k l ~ ] / q l k l %  (5) 
k 

Here the sum is over all points of the reciprocal lattice 

exclusive of the origin. Thus the sum is over all values 
of the vector k = (1, m, n)/a (6) 

for which l, m, n assume integer values satisfying the 
equation 

1 + exp [i~(1 + m) a] + exp [ilr(m + n)] 

+exp[i lr (n+l)#O.  (7) 

In order to obtain the potential energy of an ion at 
a lattice point, we place the origin of co-ordinates at 
this lattice point, and subtract from V(r) the potential 
e/[ r I due to the lattice ion itself. For very small values 
of I t  I one then finds 

V(r)-e/I  r I= - e { (q / ,A )+  2(,/q)t} 

+ {(~.q-~)s;+ (eq/.A)~;}. (8) 

Here 81 has been replaced by S~, in which the lattice 
point at the origin is excluded from the sum. We now 
note that  the first term is negative, while the two sums 
are positive. The contribution of the sums will, there- 
fore, be minimized by so choosing the parameter q as 
to minimize the first term. This value is given by 
equation (2). I t  is interesting to note that  with this 
value of q the argument of F in S 1 for a f.c.c, lattice 
assumes the same values as does the argument of the 
exponential function in $2 in the case of a b.c.c, lattice, 
and vice versa. 
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